Molecular Beam Epitaxy (MBE) III-V for photonics, electronics

MBE GEN II Coupled with a STM/AFM microscope OMICRON under ultra-vacuum

Contacts: Antonella Cavanna and Ulf Gennser  

2 DEGs in the GaAs/AlGaAs material system, grown using molecular beam epitaxy (MBE), can attain very high mobilities, with electron mean free paths of tens or even hundreds of microns. In this action we use our high-purity III-V MBE system to elaborate high mobility 2 DEGs for studies in a wide variety of fields. GaAs/AlGaAs heterojunctions containing 2 DEGs with specially adjusted carrier densities and / or distance to the surface are developed for:

as well as for a number of external collaborations

We also investigate "non-conventional" 2 DEGs. These can be two-dimensional hole gases or 2 DEGs in AlAs quantum wells, where the band degeneracies, anisotropic masses, and spin-orbit interactions can lead to novel physics. Currently, our main effort here are on 2 DEGs in membrane structures, which can be used in thermodynamic studies and for nano-electro-mechanical devices.

Figure 1: STM/AFM Omicron

Figure 2: GenII MBE

Highlights:

  • Fractional statistics in anyon collisions ( Science 368, 173 - 2020)
  • Non-local electron quantum state transmission with Coulomb interaction (Science, 2019)
  • Transmitting the quantum state of electrons across metallic island with Coulomb interaction (Science 366,1243 - 2019)
  • Tunable quantum criticality and super-ballistic transport in circuits (Science vol 360 Issue 6395 - JUN 22 2018)
  • National C'Nano Ph.D. prize attributed to Zubair Iftikhar (2017)
  • Controlling charge quantization with quantum fluctuations (Nature, 2016)
  • Triangle de la Physique Ph.D. award (for thesis in Paris-Saclay laboratories defended between 2012 and 2014) attributed to Sébastien Jezouin (2015)
  • Observation of the 'charge' Kondo effect (Nature, 2015)
  • Correlated 1D (Tomonaga-Luttinger) physics in composite quantum circuits (Nature Communications, 2013)
  • An important step towards the knowledge of the quantum laws of electricity (Nature Physics, 2011)

Publications:

Tunable Quantum Criticality and Super-ballistic Transport in a 'Charge' Kondo Circuit
Z. Iftikhar, A. Anthore, A.K. Mitchell, F.D. Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon, F. Pierre, 

Controlling charge quantization with quantum fluctuations
S. Jezouin, Z. Iftikhar, A. Anthore, F.D. Parmentier, U. Gennser, A. Cavanna, A. Ouerghi, I.P. Levkivskyi, E. Idrisov, E.V. Sukhorukov, L.I. Glazman, F. Pierre
Nature 536, 58 (2016)

Nature News & Views:  Quantum physics: Destruction of discrete charge
Y.V. Nazarov, Nature 536, 38 (2016)

Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states
Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F.D. Parmentier, A. Cavanna, F. Pierre
Nature 526, 233 (2015)

Nature News & Views:  Condensed-matter physics: Quantum dots and the Kondo effect
K. Le Hur, Nature 526, 203 (2015) 

Tomonaga-Luttinger physics in electronic quantum circuits
S. Jezouin, M. Albert, F.D. Parmentier, A. Anthore, U. Gennser, A. Cavanna, I. Safi, F. Pierre
Nature Commun. 4, 1802 (2013)

Strong back-action of a linear circuit on a single electronic quantum channel
F.D. Parmentier, A. Anthore, S. Jezouin, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly and F. Pierre
Nature Physics 7, 935 (2011)

Experimental Test of the Dynamical Coulomb Blockade Theory for Short Coherent Conductors
C. Altimiras, U. Gennser, A. Cavanna, D. Mailly, F. Pierre
 Phys. Rev. Lett. 99, 256805 (2007)  

 

 

Fundings:

Logo NanoSaclay